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An analysis is presented for the stability of a viscoelastic liquid film flowing down 
an inclined plane with respect to three-dimensional disturbances. It is shown that 
under certain circumstances, these disturbances are more unstable than the 
two-dimensional ones, contrary to Squire’s theorem. 

1. Introduction 
The stability characteristics of the flow of an ordinary viscous liquid down an 

inclined plane have been investigated by Benjamin (1957) and Yih (1955,1963). 
The same problem has been solved by Yih (1965) for the case of a non-Newtonian 
fluid obeying the constitutive equation proposed by Reiner and Rivlin (see 
Truesdell 1962) and by Gupta (1967) for an incompressible second-order fluid 
whose constitutive equation is due to Coleman & No11 (1960). The model due 
to Reiner and Rivlin is incomplete in the sense that although the stress-strain 
rate relation involves the cross-viscous term, it does not take account of the 
acceleration gradient term which is of the same order as the cross-viscous term 
(Truesdell 1962). This defect is remedied in the constitutive equation of a second- 
order fluid proposed by Coleman & Noll, which they obtained by asymptotic 
expansion of a general memory functional for slow rates of deformation. 

However, all these stability analyses are concerned with the response of the 
flow to two-dimensional disturbances. I n  the present note we have studied the 
stability characteristics of a layer of a second-order fluid flowing down an 
inclined plane with respect to three-dimensional disturbances. In  the appendix, 
we point out an error in Gupta’s (1967) earlier paper. 

2. Mathematical formulation and stability analysis 
A film of an incompressible second-order fluid of thickness d flows down a plane 

inclined at an angle 6 to the horizon. In  a rectangular system (xl, x,, x3), the basic 
flow is parallel to %,-axis and x,-axis is normal to the plane directed downwards, 
the origin being taken on the undisturbed free surface. 

We use the constitutive equation of a second-order fluid (due to Coleman & 
No11 1960) 

where yo, P and y are material constants and A(N)ij are the Rivlin-Ericksen 
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tensors (see Gupta 1967). Substituting Si j  from (2.1) in the equations of momen- 
tum and continuity, Gupta deduced the velocity distribution for the undisturbed - 

flow as {v",~,), 0, 0}, where 
V!(X,) = #v* (1 -$. 

Here v* = pgd2 sin 8/37, is the average velocity. 
We now consider the stability of this solution with respect to three-dimensional 

disturbances, each component of which is a function of x, multiplied by 
exp [ia(xl - tt) + i/?x3]. Here d and ,8 are the wave-numbers along x1 and x3 axes 
and c^ = tr + ic, is the phase speed of the disturbance. Let us introduce a new 
co-ordinate system (yl, y,, y3) by rotating xl, x3 through an angle 8 = tan-l1$/6 
keeping x,-axis fixed. In  this system 

y, = x,, 
The stability problem under consideration is now equivalent to that of a flow 
with the velocity field (v:(y,) cos 8 , O ,  - v;(y,) sin S> subject to perturbations of 
the form 

qf(yz) being the amplitude of the perturbation. 

with respect to the basic steady flow as 

y1 = x1 cos 8 + x3 sin 8, y3 = x3 cos 8 - x1 sin 0. (2-3) 

qi = q~(y2)exp[ia(yl-ct)l (j = 1,2 ,3 ,  ...I, (2.4) 

In  the co-ordinates yl, y,, y3 the equations of momentum can be linearized 

(2.6) 

(2.7) 

where dashes refer to perturbation quantities, p f  is the perturbation pressure and 
Dij  = Sii + paiii is the deviatoric part of the stress tensor Sii. 

The equation of continuity reduces to 

av; av;; -+- = 0. 
aY1 aY2 

We shall choose v* as unit of velocity, d as unit of length, d/v* as unit of time and 
pv*2 as unit of stresses and retain the same notations for non-dimensional 
variables. Equation (2.8) then permits the use of a non-dimensional stream func- 
tion $' defined by v; = af/ay,, v; = - a$'/ayl. Elimination of pressure between 
(2.5) and (2.6) leads to an equation which may involve vi in its right-hand side, 
and Squire's theorem ceases to hold. Assuming 

$' = &Yz) exp [WY,- ct)I, 4 = t ( Y 2 )  exp [ia(Yl- ct)l, (2.9) 

and using (2.1) and (2.8) we can write the final equations for this stability prob- 
lem in terms of non-dimensional variables as follows 

R i a [ ( v o , c o s H - c ) ( 0 ~ - a ~ ) ~ - ~ D ~ v p C O S ~ ]  

= ( 0 2  - a2)2Q + iaRM[ (v: COB 8 - c )  (D2 - + 2 Dvq( D2 - a,) 5 sin 81 
+ gRia21'[Dvp(D2-a2)~sin0], (2.10) 
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Ria[(v! cosI9-c)[+ DvO,$sinO] 
= (D2 - a2) [ + Ri~IM[(vO, cos 8 - C )  (D2 - a2) 5 + ~DvO, D[ cos I9 + <D2v0, cos 8 

- a2DvY $ sin I9 + iaD2v0, $ sin 8 + iaDvO, Dq5 sin I9 
+ D2vP D$ sin I91 + iaRN[&Dv!(D2 - a2) $ sin O 
+ D2v; Dq5 sin 8 + &D2v7 < cos I9 + DvO, 0 5  cos 81. (2.11) 

Here (2.10) is obtained by eliminating pressure between (2.5) and (2.6) and 
(2.11) follows from (2.7) and D = d/dy,. Further, R,IM and N are respectively 
the Reynolds number, visco-elastic and cross-viscous parameters defined as 

(2.12) 

The no-slip boundary condition at the plane gives 

$( 1) = D$( 1) = [( 1) = 0. (2.13) 

As for the boundary condition at  the free surface, we note that the tangential 
stress must vanish there (S12 = S,, = 0) and the normal stress must balance 
that due to surface tension. Proceeding as in Gupta's (1967) paper, we give below 
the final forms of these boundary conditions as 

3 (D~+~~)~~+~CLRM[~$COSI~--CC*(D~+~~)$]--$COSI~ = 0 at y, = 0, (2.14) 
C* 

(2.15) D[ = --sin@ at y2 = 0, 
3 
C* 

and (D2-a2)Dq5+iaRM[6[sinO-3D$cos19-c*(D2-a2)D$] 
+ $iaRN[ sin I9 + [iaRc* - 201, + 2ia3c*MR]D$ 

+-(RSa2+3cot6)$ = 0 at  y2 = 0, (2.16) 

where c* = c - cos 8 and S is the non-dimensional parameter characterizing 
surface tension. 

Equations (2.10) and (2.11), along with the boundary conditions (2.13) to 
(2.16), constitute an eigenvalue problem. For a non-trivial solution, a relation 

c = c(R, M ,  N ,  X, a, 19) (2.17) 

will hold good among the physical parameters and this will determine the neutral 
stability curves ci = 0. 

ia 
C* 

3. Solution for long waves 
Since the equations and the boundary conditions do not degenerate as a -+ 0, 

we may solve this system following the regular perturbation procedure of Yih 
(1963). 

For the zeroth approximation (i.e. for terms of order ao), we have 

D4#, = D2[, = 0, 

3$,,( 0) sin 0 
c* 

D&(O) = - , 03$,,(0) = 0. 
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The solution of this differential system is 
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#O(Y2) = (1 - Y2)2, co = 3 cos 8, 

tO(Y2)  = 2(1-Y2)tan8, 

where co is the eigenvalue for the zeroth approximation. Since co is real we may 
conclude that a = 0 is a part of the neutral stability curve. 

For the next approximation, we retain terms of order a: and we get upon using 

D4#, = - 6iaRy2 cos 8, (3.21, 

D2[1 = 3iaR[ - 1 + y?j - 4My2 + N (  1 + 2y2)], 

subject to 

1 #l(l) = Wl(1) = L(1) = 0’ 
D2#1(0) - 2#,(O)++Acsec0 = 0, 

Dtl = - 3 sin 0(#,/c$ - q50Ac/c$2) 

D3#, + 6iaRM(sec 8 + sin 8 tan 8) + 3iaRN sec 0 tan 0 
at y2 = 0, 

-3 i aRc0~0+2 iasec8~0 t6  = 0 at  y2 = 0, 

P (3.3) 

where c$ = co - 3 cos 8 and Ac stands for the change in c,, as a deviates from zero. 
It may be noted that the differential system for 4, does not involve 6, and 

consequently this suffices to determine Ac as follows 

gAc sec 8 = QiaR cos 8 - giaR sec 8 cot 6 

- 2iaRM[sec0+sin8tan8]-iaRNsin0tan8. (3.4) 

Neutral stability curves (ci = 0) in (a ,  R)-plane are given by Ac = 0, which 
determines the critical Reynolds number as 

R, = 8 cot S/[+ cos2 0 - 2M( 1 + sin2 8 )  - N sin2 01. (3.5) 

This shows that for three-dimensional disturbances (0 $; 0), R, is affected both 
by nil and N .  For two-dimensional disturbances (8 = 0), (3.5) gives the critical 
Reynolds number R,, (say) as 

R,I = cot S/(+ - 2 M ) ,  (3.6) 

which does not involve the cross-viscous parameter N .  Now R,. > R, if 

2 cos28- 2M( 1 + sin2 8) - N sin2 0 > Q - 2M, 

which implies - 2M > Q + N provided 8 =/= 0. (3.7) 

When M = 0, the above inequality is not valid if N > 0. Thus for a Reiner- 
Rivlin fluid with a positive cross-viscous coefficient two-dimensional distur- 
bances will be more unstable than three-dimensional ones, in agreement with the 
conclusion of Listrov (1966). However, for a visco-elastic fluid with M < 0 the 
inequality (3.7) can clearly hold good with N > 0 if lM(  > &+*N,  in which 
case oblique disturbances will be more unstable than the two-dimensional ones. 
Under such circumstances, therefore, Squire’s theorem no longer remains valid. 
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Appendix 
In  the paper by Gupta (1967), the boundary condition (3.24) on the normal 

stress is in error. The corrected equation is 

( 1  - RMiac‘) $”(0) + [3iMa3c’R - i a M R  

+iac’R-3a2]$’(0)+ cotpo+,SR $ ( O )  = 0. iica ia3 c 1 
The differential equation (3.18) and the remaining boundary conditions are all 
correct. With this modification, the critical Reynolds number R, (given by 
(4.10) of Gupta’s (1967) paper) now stands corrected as 

R, = 5cotpo/(2-5M). 

However, the qualitative conclusions about instability remain unaffected. 
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